已知,如图, ABCD中,AD=3cm,CD=1cm,∠B=45°,点P从点A出发,沿AD方向匀速运动,速度为3cm/s;点Q从点C出发,沿CD方向匀速运动,速度为1cm/s,连接并延长QP交BA的延长线M,过M作MN⊥BC,垂足是N,设运动时间为t(s)(0<t<1),解答下列问题: (1)当t为何值时,四边形AQDM是平行四边形? (2)设四边形ANPM的面积为y(cm 2 ),求y与t之间的函数关系式; (3)是否存在某一时刻t,使四边形ANPM的面积是 ABCD面积的一半,若存在,求出相应的t值,若不存在,说明理由 (4)连接AC,是否存在某一时刻t,使NP与AC的交点把线段AC分成 的两部分?若存在,求出相应的t值,若不存在,说明理由