阅读材料:(本题8分) 例:说明代数式 的几何意义,并求它的最小值. 解: ,如图,建立平面直角坐标系,点P(x,0)是x轴上一点,则 可以看P与点A(0,1)的距离, 可以看P与点B(3,2)的距离,所以原代数式的值可以看成线段PA与PB长度之和,它的最小值就是PA+PB的最小值. 设点A关于x轴的对称点为A′,则PA=PA′,因此,求PA+PB的最小值, 只需求PA′+PB的最小值,而点A′、B间的直线段距离最短, 所以PA′+PB的最小值为线段A′B的长度.为此,构造直角 三角形A′CB,因为A′C=3,CB=3,所以A′B= , 即原式的最小值为 。 根据以上阅读材料,解答下列问题: (1)代数式 的值可以看成平面直角坐标系中点P(x,0)与点A(1,1)、点B 的距离之和.(填写点B的坐标) (2)求代数式 的最小值