已知抛物线y=ax 2 +bx-4的图象与x 相交与A、B(点A在B的左边),与y轴相交与C,抛物线过点A(-1,0)且OB=OC,P是线段BC上的一个动点,过P作直线PE⊥x轴于E,交抛物线于F。 (1)求抛物线的解析式; (2)若△BPE与△BPF的两面积之比为2∶3时,求E点的坐标; (3)设OE=t,△CPE的面积为S,试求出S与t的函数关系式;当t为何值时,S有最大值,并求出最大值;(4)在(3)中,当S取得最大值时,在抛物线上求点Q,使得△QEC是以EC为底边的等腰三角形,求Q的坐标。