(1)夜晚,在路灯下散步.已知身高1.5米,路灯的灯柱高4.5米 ①如图1,若在相距10米的两路灯AB、CD之间行走(不含两端),他前后的两个影子长分别为FM=x米,FN=y米,试求y与x之间的函数关系式,并指出自变量x的取值范围; (图一) ②有言道:形影不离.其原意为:人的影子与自己紧密相伴,无法分离。但在灯光下,人的速度与影子的速度却不是一样的!如图2,若在灯柱PQ前,朝着影子的方向(如图箭头),以0.8米/秒的速度匀速行走,试求他影子的顶端R在地面上移动的速度。 (图二) (2)我们知道,函数图象能直观地刻画因变量与自变量之间的变化关系.相信,大家都听说过龟兔赛跑的故事吧.现有一新版龟兔赛跑的故事:由于兔子上次比赛过后不服气,挑乌龟再来另一场比赛,不过这次路线由乌龟确定……比赛开始,在同一起点出发,按照规定路线,兔子飞驰而出,极速奔跑,直至跑到一条小河边,遥望着河对岸的终点,兔子呆坐在那里,一时不知怎么办。过了许久,乌龟一路跚跚而来,跳入河中,以比在更快的速度游到对岸,抵达终点,再次获胜。根据新版龟兔赛跑的故事情节,请在同一坐标系内(如图3),画出乌龟、兔子离开终点的距离s与出发时间t的函数图象示意图.(实线表示乌龟,虚线表示兔子) (图三)