十八世纪瑞士数学家欧拉证明了简单多面体中顶点数(V)、面数(F)、棱数(E)之间存在的一个有趣的关系式,被称为欧拉公式。请你观察下列几种简单多面体模型,解答下列问题: (1)根据上面多面体模型,完成表格中的空格: 多面体 顶点数(V) 面数(F) 棱数(E) 四面体 4 4 长方体 8 6 12 正八面体 8 12 正十二面体 20 12 30 你发现顶点数(V)、面数(F)、棱数(E)之间存在的关系式是:_______; (2)一个多面体的面数比顶点数大8,且有30条棱,则这个多面体的面数是___________; (3)某个玻璃鉓品的外形是简单多面体,它的外表面是由三角形和八边形两种多边形拼接而成,且有24个顶点,每个顶点处3条棱,设该多面体外表三角形的个数为x个,八边形的个数为y个,求x+y的值。