皮皮学,免费搜题
登录
搜题
【简答题】
检查验收的依据包括有关的测绘任务书、合同书中有关产品( )特性的摘录文件或委托检查、验收文件,有关法规和技术标准、( )和有关的技术规定等。
手机使用
分享
复制链接
新浪微博
分享QQ
微信扫一扫
微信内点击右上角“…”即可分享
反馈
参考答案:
举一反三
【简答题】对于定义在D上的函数y=f(x),若同时满足:①f(x)在D内单调;②存在区间[a,b]?D,使f(x)在区间[a,b]上值域为[a,b],则函数y=f(x)(x∈D)称为闭函数.按照上述定义,若函数 y= 2 x 为闭函数,则符合条件②的区间[a,b]可以是______.
查看完整题目与答案
【单选题】函数f(x)的定义域为D,若满足:①f(x)在D内是单调函数;②存在[a,b]?D,(a<b)使得f(x)在[a,b]上的值域也是[a,b],则称y=f(x)为闭函数. 若 f(x)=k+ x 是闭函数,则实数k的取值范围是( )
A.
(- 1 4 ,+∞)
B.
[- 1 2 ,+∞)
C.
[- 1 2 ,- 1 4 )
D.
(- 1 4 ,0]
查看完整题目与答案
【多选题】下列哪些项是产权封锁的主要途径( )?
A.
以专利相威胁, 要求支付专利许可费
B.
在我国大量申请专利, 重重封锁我国未来产业发展
C.
技术标准与专利相结合, 保持垄断性优势
D.
利用侵权指控, 打击国内企业
查看完整题目与答案
【简答题】证明:若函数f(x)在开区间(a,b)内可导, f'(x)在(a b)内单调,求证:f'(x)在(a b)内连续
查看完整题目与答案
【判断题】物品出库作业中的“三不”是指未接单据不备库、未经审单不翻账、未经复核不出库。
A.
正确
B.
错误
查看完整题目与答案
【单选题】“ 猴王初问世 ” 中的 “ 初 ” 的句法成分是( )
A.
状语
B.
谓语
C.
动语
D.
中心语
查看完整题目与答案
【简答题】曳引轮上轮与曳引绳顶端之间的间隙,要求不得大于()mm,否则更换曳引轮,每年检查一次。
查看完整题目与答案
【简答题】函数f(x)的定义域为D,若满足①f(x)在D内是单调函数,②存在[a,b]?D,使f(x)在[a,b]上的值域为[-b,-a],那么y=f(x)叫做对称函数,现有f(x)= 2-x -k是对称函数,那么k的取值范围是______.
查看完整题目与答案
【简答题】若函数f(x)在区间(a,b)内可导,且f'(x)=0,则函数f(x)在(a,b)内恒等于一个常数.
查看完整题目与答案
【简答题】函数 f ( x )的定义域为 D ,若满足① f ( x )在 D 内是单调函数,②存在[ a , b ]? D ,使 f ( x )在[ a , b ]上的值域为[- b ,- a ],那么 y = f ( x )叫做对称函数,现有 f ( x )= - k 是对称函数,那么 k 的取值范围是________.
查看完整题目与答案
相关题目:
【简答题】对于定义在D上的函数y=f(x),若同时满足:①f(x)在D内单调;②存在区间[a,b]?D,使f(x)在区间[a,b]上值域为[a,b],则函数y=f(x)(x∈D)称为闭函数.按照上述定义,若函数 y= 2 x 为闭函数,则符合条件②的区间[a,b]可以是______.
查看完整题目与答案
【单选题】函数f(x)的定义域为D,若满足:①f(x)在D内是单调函数;②存在[a,b]?D,(a<b)使得f(x)在[a,b]上的值域也是[a,b],则称y=f(x)为闭函数. 若 f(x)=k+ x 是闭函数,则实数k的取值范围是( )
A.
(- 1 4 ,+∞)
B.
[- 1 2 ,+∞)
C.
[- 1 2 ,- 1 4 )
D.
(- 1 4 ,0]
查看完整题目与答案
【多选题】下列哪些项是产权封锁的主要途径( )?
A.
以专利相威胁, 要求支付专利许可费
B.
在我国大量申请专利, 重重封锁我国未来产业发展
C.
技术标准与专利相结合, 保持垄断性优势
D.
利用侵权指控, 打击国内企业
查看完整题目与答案
【简答题】证明:若函数f(x)在开区间(a,b)内可导, f'(x)在(a b)内单调,求证:f'(x)在(a b)内连续
查看完整题目与答案
【判断题】物品出库作业中的“三不”是指未接单据不备库、未经审单不翻账、未经复核不出库。
A.
正确
B.
错误
查看完整题目与答案
【单选题】“ 猴王初问世 ” 中的 “ 初 ” 的句法成分是( )
A.
状语
B.
谓语
C.
动语
D.
中心语
查看完整题目与答案
【简答题】曳引轮上轮与曳引绳顶端之间的间隙,要求不得大于()mm,否则更换曳引轮,每年检查一次。
查看完整题目与答案
【简答题】函数f(x)的定义域为D,若满足①f(x)在D内是单调函数,②存在[a,b]?D,使f(x)在[a,b]上的值域为[-b,-a],那么y=f(x)叫做对称函数,现有f(x)= 2-x -k是对称函数,那么k的取值范围是______.
查看完整题目与答案
【简答题】若函数f(x)在区间(a,b)内可导,且f'(x)=0,则函数f(x)在(a,b)内恒等于一个常数.
查看完整题目与答案
【简答题】函数 f ( x )的定义域为 D ,若满足① f ( x )在 D 内是单调函数,②存在[ a , b ]? D ,使 f ( x )在[ a , b ]上的值域为[- b ,- a ],那么 y = f ( x )叫做对称函数,现有 f ( x )= - k 是对称函数,那么 k 的取值范围是________.
查看完整题目与答案
参考解析:
知识点:
题目纠错 0
发布