在前面的学习中,我们通过对同一面积的不同表达和比较,根据图①和图②发现并验证了平方差公式和完全平方公式 这种利用面积关系解决问题的方法,使抽象的数量关系因集合直观而形象化。 【研究速算】 提出问题:47×43,56×54,79×71,……是一些十位数字相同,且个位数字之和是10的两个两位数相乘的算式,是否可以找到一种速算方法? 几何建模: 用矩形的面积表示两个正数的乘积,以47×43为例: (1)画长为47,宽为43的矩形,如图③,将这个47×43的矩形从右边切下长40,宽3的一条,拼接到原矩形的上面。 (2)分析:原矩形面积可以有两种不同的表达方式,47×43的矩形面积或(40+7+3)×40的矩形与右上角3×7的矩形面积之和,即47×43=(40+10)×40+3×7=5×4×100+3×7=2021,用文字表述47×43的速算方法是:十位数字4加1的和与4相乘,再乘以100,加上个位数字3与7的积,构成运算结果。 归纳提炼: 两个十位数字相同,并且个位数字之和是10的两位数相乘的速算方法是(用文字表述) . 【研究方程】 提出问题:怎么图解一元二次方程 几何建模: (1)变形: (2)画四个长为 ,宽为 的矩形,构造图④ (3)分析:图中的大正方形面积可以有两种不同的表达方式, 或四个长 ,宽 的矩形之和,加上中间边长为2的小正方形面积 即: ∵ ∴ ∴ ∵ ∴ 归纳提炼:求关于 的一元二次方程 的解 要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长) 【研究不等关系】 提出问题:怎么运用矩形面积表示 与 的大小关系(其中 )? 几何建模: (1)画长 ,宽 的矩形,按图⑤方式分割 (2)变形: (3)分析:图⑤中大矩形的面积可以表示为 ;阴影部分面积可以表示为 , 画点部分的面积可表示为 ,由图形的部分与整体的关系可知: > ,即 > 归纳提炼: 当 , 时,表示 与 的大小关系 根据题意,设 , ,要求参照上述研究方法,画出示意图,并写出几何建模步骤(用钢笔或圆珠笔画图,并标注相关线段的长)