如图:在平面直角坐标系中,将长方形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB=3,AD=6,将纸片沿过点M的直线折叠(点M在边AB上),使点B落在边AD上的E处(若折痕MN与x轴相交时,其交点即为N),过点E作EQ⊥BC于Q,交折痕于点P。 小题1:①当点 分别与AB的中点、A点重合时,那么对应的点P分别是点 、 ,则 ( , ) 、 ( , ) ;②当∠OMN=60°时,对应的点P是点 ,求 的坐标; 小题2:若抛物线 ,是经过(1)中的点 、 、 ,试求a、b、c的值; 小题3:在一般情况下,设P点坐标是(x,y),那么y与x之间函数关系式还会与(2)中函数关系相同吗(不考虑x的取值范围)?请你利用有关几何性质(即不再用 、 、 三点)求出y与x之间的关系来给予说明.