如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,3)和B(5,0),连接AB。 (1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD(点A落到点C处),求经过B、C、D三点的抛物线的解析式; (2)将(l)中抛物线向右平移两个单位长度,点B的对应点为点E,平移后的抛物线与抛物线相交于点F,P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标; (3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由。